Comparisons and Combinations of Oscillation Measurements

May 12, 2004

1 Introduction

For a three active neutrino scenario, neutrino oscillations are described by six physics parameters: θ_{13} , θ_{12} , θ_{23} , Δm_{12}^2 , Δm_{23}^2 , and the CP violation phase, δ . In addition, a full description also requires knowing the hierarchy of mass state 3 relative to 1 and 2, *i.e.* the sign of Δm_{23}^2 . Of the six parameters, it is assumed for this study that θ_{12} , θ_{23} , Δm_{12}^2 , and Δm_{23}^2 are known to the precision expected from either the current program (SuperK, Minos and CNGS) or the future program (Nova and T2K). This leaves for determination θ_{13} , δ , and the mass hierarchy which are the subject of this study. Table 1 lists the values as well as the current and future errors used in the study for θ_{12} , θ_{23} , Δm_{12}^2 , and Δm_{23}^2 .

The experimental inputs for the study are given in Table 2 and are derived from estimates of the measurement sensitivities. Three reactor experiments are considered corresponding to a small (Double-CHOOZ), medium(Braidwood, Daya Bay type), or large (MiniBooNE size) reactor $\overline{\nu}_e$ measurement. Two offaxis long-baseline experiments are considered, JParc to SuperK (T2K) and the NuMI offaxis proposal (Nova). The sensitivities for the reactor experiments are scaled from the $\sin^2 2\theta_{13}$ 90% C.L. limits at $\Delta m_{23}^2 = 2.5 \times 10^{-3}$ eV² for a null oscillation scenario. For the long-baseline experiments, the uncertainties are scaled from the expected number of events given in the Nova proposal and a recent talk by Y. Suzuki at the Seesaw workshop. The given uncertainties include statistical errors associated with the background and signal for a 5 year data run but no systematic uncertainty.

The uncertainty on the θ_{23} parameter can have a significant effect on the long-baseline measurements since the quantity that is constrained as given in Table 1 is $\sin^2 2\theta_{23}$ and the parameter that modulates the long-baseline oscillation probability is $\sin^2 \theta_{23}$. This can lead to a 65% (23%)

Parameter	Value	Current σ	urrent σ Future σ	
$\sin^2 2\theta_{23}$	1.0	0.06 (SuperK)	0.01 (T2K)	
$\Delta m_{23}^2 ({\rm eV}^2)$	2.5×10^{-3}	$0.33 \times 10^{-3} \text{ (SuperK)}$	$0.05 \times 10^{-3} \text{ (T2K)}$	
$\theta_{12}(\deg)$	30	_	_	
$\Delta m_{12}^2 (\mathrm{eV}^2)$	7.1×10^{-5}	_	_	

Table 1: Current and future uncertainty estimates on oscillation parameters. This study assumes values corresponding to the future estimates.

Basis of		Osc. Prob. and σ for $\sin^2 2\theta_{13} =$		
Experiment	Estimate	0.02	0.05	0.10
Reactor $(E_{\nu} = 3.6 \text{ MeV})$	$\sin^2 2\theta_{13}^{Limit}$			
$\langle L \rangle$	$0 \Delta m_{23}^2 = 2.5 \times 10^{-3} \text{eV}^2$			
Small 1.05 km	0.03@90%CL	0.013 ± 0.018	0.032 ± 0.018	0.064 ± 0.018
Medium 1.8 km	0.01@90%CL	0.020 ± 0.006	0.050 ± 0.006	0.100 ± 0.006
Large 1.8 km	0.005@90%CL	0.020 ± 0.003	0.050 ± 0.003	0.100 ± 0.003
$T2K (E_{\nu} = 600 \text{ MeV})$	N_{events}^{5yrs} : $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = 0$			
$\langle L \rangle = 295 \; \mathrm{km}$	$\bigcirc \Delta m_{23}^2 = 2.5 \times 10^{-3} \text{eV}^2$			
ν	102 signal / 24.9 bkgnd	0.011 ± 0.003	0.026 ± 0.004	0.051 ± 0.005
$\overline{ u}$	38.5 signal / 14.4 bkgnd	0.009 ± 0.006	0.022 ± 0.007	0.044 ± 0.009
Nova $(E_{\nu} = 2.3 \text{ GeV})$	N_{events}^{5yrs} : $\sin^2 2\theta_{13} = 0.1$, $\delta_{CP} = 0$			
$\langle L \rangle = 810 \text{ km}$	$0 \Delta m_{23}^2 = 2.5 \times 10^{-3} \text{eV}^2$			
ν	175.2 signal / 38.1 bkgnd	0.011 ± 0.002	0.025 ± 0.003	0.048 ± 0.003
$\overline{ u}$	66 signal / 22 bkgnd	0.008 ± 0.003	0.018 ± 0.004	0.034 ± 0.005

Table 2: Estimates of the experimental uncertainties associated with various future oscillation experiments. For the long-baseline experiments, the given uncertainties include statistical errors associated with the background and signal for a 5 year data run but no systematic uncertainty.

uncertainty in the oscillation probability with the present (future) errors.

For the studies given below, the uncertainties due to the variations of θ_{23} , Δm_{23}^2 , and the mass hierarchy are included. For $\bar{\nu}$ running, there can be up to a 20% contamination of ν oscillation events within the analysis cuts; for the studies presented here, this contamination is assumed to be zero. Results are typically given for five year data runs but in addition some results are presented for $\times 5$ the nominal rate (or 25 effective years) which would somewhat correspond to an upgraded long-baseline program with a new proton driver at Fermilab or the Hyper-K upgrade at JParc.